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Abstract

Person re-identification (ReID) has gained a lot of atten-
tion in recent years due to its application in video surveil-
lance and security. Traditional person re-identification aims
to match the same pedestrians under different visible cam-
eras. However, in poor light environments, visible cameras
may not work, hindering the application of pedestrian re-
identification in real-life scenarios. To overcome this chal-
lenge, the introduction of infrared images as complementary
information can enhance the accuracy and robustness of per-
son re-identification by utilizing the thermal energy distribu-
tion present in infrared images, which promotes the develop-
ment of visible-infrared person re-identification (VI-ReID).
However, there are significant modality differences between
visible and infrared images, making direct visible-infrared
image person re-identification a challenging task. In practical
applications, obtaining paired annotations for visible-infrared
image pairs is expensive and time-consuming, making it dif-
ficult to acquire large-scale annotated datasets. To address the
aforementioned issues, we propose an unsupervised learn-
ing framework for VI-ReID, which contains Modal-specific
Cluster Contrast (MSCC) module, Modal-invariant Cluster
Contrast (MICC) module, and Prototype Similarity Associ-
ation (PSA) module. These modules are used to learn modal-
specific information, explore modal-invariant information,
and establish cross-modal association, respectively. Compre-
hensive experimental results demonstrate the effectiveness of
our proposed approach.

Introduction
Person re-identification (ReID) targets matching the same
person across different cameras(Ge et al. 2021; Guo et al.
2019). In recent years, ReID has gained widespread atten-
tion due to its application in the field of intelligent monitor-
ing(Wang et al. 2017). However, the previously widely used
technology of collecting images using visible light cameras
cannot accurately work in low-light scenarios such as night-
time, which greatly limits the performance of intelligent
monitoring systems that only use single-modal ReID(Wang
et al. 2019b). To address this issue, researchers have pro-
posed cross-modal visible informed person re-identification
(VI-ReID), which involves cross-modal fusion recognition
of images captured by infrared and visible light cameras(Wu
et al. 2017b).

However, on this basis, new issues have emerged in the

study. Training VI-ReID models in a supervised manual re-
quires a substantial amount of cross-modal identity annota-
tions, making it expendable and limiting its practical appli-
cation in real-world scenarios.

Motivated by the aforementioned factors, this article
delves into a complex unsupervised learning challenge
known as USL-VI-ReID. The objective of this task is to ex-
tract modality-invariant knowledge from unlabeled datasets
of visible and infrared images, enabling the identification of
individuals captured by both types of cameras. We propose
an efficient collaborative unsupervised learning framework
for VI-ReID, as shown in Fig. 1. The proposed method con-
sists of three main modules: 1) Modal-specific Cluster Con-
trast learning (MSCC), 2) Modal-invariant Cluster Contrast
learning (MICC), and 3) Prototype Similarity Association
(PSA). To be specific, the function of each module is as fol-
lows:

• Modal-specific Cluster Contrast learning. As shown
in Fig. 1(a), We first employ a dual-stream network to
extract the modal-specific features of visible and infrared
images, respectively. Afterward, we cluster the features
by DBSCAN and compute the prototypes of each cluster,
which are used to initialize modal-specific memories. In
each iteration, the modality-specific shallow layers are
updated by the ClusterNCE loss (Dai et al. 2021).

• Modal-invariant Cluster Contrast learning. Unlike
the previous methods, we not only cluster intra-modal
features but also inter-modal features, which helps
the model better learn modal-invariant information. As
shown in Fig. 1(b), different from MSCC, MICC regards
clusters containing both visible and infrared features as
available clusters and discards clusters with only single-
modal features.

• Prototype Similarity Association. Based on the simi-
larity between visible and infrared prototypes, we use
triplet loss to minimize the distance between the positive-
pair cluster centers while increasing that between the
negative-pair cluster centers, thereby further exploring
the correlation between visible and infrared features (See
Fig. 1(c)).
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Figure 1: The framework of our method.

Related Work
Supervised Visible-Infrared Person ReID.
Visible-infrared person ReID (VI-ReID) poses a formidable
cross-modality person recognition challenge due to the sub-
stantial modality gap between visible and infrared intra-class
person images (Dai et al. 2018; Hao et al. 2021; Tian et al.
2021; Ye et al. 2020). Various techniques have been devel-
oped to address this challenge. However, most supervised
VI-ReID methods, like those proposed by (Wu et al. 2017c;
Wang et al. 2019a; Wu et al. 2021), heavily rely on abundant
cross-modality identity annotations, limiting their versatility
in diverse scenarios.

Unsupervised Single-Modality Person ReID.
Traditional unsupervised person ReID methods can be
broadly categorized into two groups: fully unsupervised
learning (USL) methods and unsupervised domain adapta-
tion (UDA) methods, depending on whether or not they uti-
lize labeled source domain datasets for model training. In
the case of UDA, some approaches (Chen et al. 2021; Chen,
Zhu, and Gong 2019; Wei et al. 2018) employ generative
techniques to transfer knowledge from the source domain
to the target domain. Unsupervised Learning (USL) offers
a more challenging yet pragmatic approach for real-world
scenarios, as it circumvents the need for labeled source do-
main datasets. In recent years, many USL methods (Dai et al.
2022a; Wang et al. 2021; Zhang et al. 2022, 2021) have typi-
cally leveraged pseudo-labels generated by clustering meth-
ods to optimize the model. These techniques have further
refined the quality of pseudo-labels.

Unsupervised Visible-Infrared Person ReID.
Unsupervised Visible-Infrared Person ReID (USL-VI-
ReID) problem has two challenges. First, different from
single-modality person ReID, USL-VI-ReID has a large
cross-modality discrepancy, which results in large intra-

class variations and makes it difficult to generate reli-
able cross-modality labels. Second, there are no available
cross-modality (visible-infrared) identity labels in USL-VI-
ReID, leading to the difficulty in directly learning modality-
invariant feature representations. H2H (Liang et al. 2021)
started the first attempt by designing a two-stage method to
solve the USL-VI-ReID task, including homogeneous learn-
ing and heterogeneous learning. OTLA (Wang et al. 2022)
tries to assign the infrared images to the pseudo-visible la-
bels based on the optimal transport strategy. However, these
methods require extra RGB datasets for pre-training, making
the method less scalable in real-world deployments.

Method
Formulation and Overview
Let X = {V,R} denote an unlabeled VI-ReID dataset, where
V = {xv

i }
Nv
i=1 and R = {xr

i }
Nr
i=1 denote Nv visible images and

Nr infrared images from two modalities, respectively. In the
USL-VI-ReID task, our goal is to train a deep neural net-
work fθ (·) to project an image xi from the dataset X into an
embedding space Fθ and obtain a d-dimensional modality-
invariant representation ui = fθ (xi) ∈ Rd .

We first utilize DBSCAN(Ester et al. 1996b) algorithm to
obtain pseudo labels YV = {yv

i }
Kv
i=1 and YR = {yr

i}
Kr
i=1 for un-

labeled samples from two modalities, where Yv and Yr denote
the number of clustering of Visible and infrared modalities,
respectively. A two-stream encoder with modality-specific
shallow layers and modality-shared deep layers is used to
extract features.

Modal-specific Cluster Contrast
Different statistical properties of multi-modal data hint it is
rather difficult to fuse different modalities in the data space.
In light of this, we design a modality-specific cluster contrast



learning module to transform the data into low-dimensional
latent space. This module performs the main task of feature
learning. At the beginning of each training epoch, we initial-
ize two modality-specific memory banks Mυ and Mr by the
cluster centroids {φ υ

i }
Kv
i=1 and {φ r

i }
Kr
i=1 respectively, to store

the representations of clusters from each modality and up-
date them with a momentum strategy (Chen, Lagadec, and
Bremond 2021; Dai et al. 2022b), where Kυ and Kr are the
numbers of grouped clusters in these two modalities. This
training process enables the encoder to extract expressive
features for each modality and generate high-quality pseudo
labels. This process can be written as:

φ
i
k =

1∣∣Hi
k

∣∣ ∑
ui

n∈Hi
k

ui
n, (1)

φ
v
l =

1∣∣Hv
l

∣∣ ∑
uv

n∈Hv
l

uv
n, (2)

where Hi(v)
k denotes the k-th cluster set in infrared or

visible modality and |·| indicates the number of instances
per cluster.
Modality-specific Memory Updating. During training,
we sample P person identities and Z instances for each
identity from each modality training set. Then, we obtain
a total number of 3P× Z query images including infrared,
visible, and augmented visible person images in a batch. We
update the two modality-specific memories by a momentum
updating strategy:

φ
i(δ )
k ← βφ

i(δ−1)
k +(1−β )qi, (3)

φ
v(δ )
l ← βφ

v(δ−1)
l +(1−β )qv, (4)

φ
υ(δ )
l ← βφ

υ(δ−1)
l +(1−β )qυa, (5)

where qυa is the augmented query instance features. β is
the momentum updating factor. δ is the iteration number.
Joint Learning Loss Function. In each iteration, the
modality-specific shallow layers and shared layers are
jointly updated by three types of ClusterNCE(Dai et al.
2022c) loss, including infrared, visible, and augmented
visible loss by the following equations:

Lqi =− log
exp

(
qi ·φ i

+/τ
)

∑
K
k=0 exp

(
qi ·φ i

k/τ
) , (6)

Lqv =− log
exp

(
qv ·φ v

+/τ
)

∑
L
l=0 exp

(
qv ·φ v

k /τ
) , (7)

Lqva =− log
exp

(
qva ·φ υ

+/τ
)

∑
L
l=0 exp

(
qva ·φ υ

k /τ
) , (8)

where φ+ is the positive representation vector of the
cluster corresponding to the pseudo label of the query and
the τ is a temperature hyper-parameter following Cluster
Contrast.
MSCC Loss Function. Certainly, three types of Clus-
terNCE loss function are designed to learn discriminative
representation:

LMSCC = Lqi +Lqv +Lqva . (9)

The loss value is low when q is close to its positive clus-
ter representation and dissimilar to all other cluster features.
This process is equivalent to two modality-specific softmax-
based classifiers that try to classify qi as φ i

+, and qυ together
with qva as qva as φ v

+. qva is the query of channel augmented
features for learning color-invariant information, and thus
feature encoders have a certain modality generalization abil-
ity with the help of joint augmented learning.

Modal-invariant Cluster Contrast
Through the Modal-specific Cluster Contrast(MSCC) in-
troduced above, the model has learned the specific char-
acteristics of a specific mode and has the generalization
ability of a single mode. However, the model cannot han-
dle the correspondence between different modalities well,
making it difficult to truly achieve cross-modality pedes-
trian re-identification. In order to better establish cross-
modality connections, we have designed a Modal-invariant
Cluster Contrast(MICC) module to better capture invariant
features between modalities, thereby having stronger ability
for cross-modality pedestrian re-identification.

We put the features of visible and infrared features to-
gether forming a hybrid set {uv

1, ...,u
v
Nv
,ui

1, ...,u
i
Nr
}, and use

the classic DBSCAN algorithm to cluster. Clusters contain-
ing both visible and infrared features are regarded as avail-
able clusters, and those with only single modal features are
discarded. This operation helps the network better capture
cross modal features and establish relationships between
them. We will average the visible and infrared features be-
longing to the same cluster to obtain the center feature of
the cross-modality cluster. The specific operation can be de-
scribed as

φ
vi
g =

1∣∣Hvi
g
∣∣ ∑

uvi
n ∈Hvi

g

uvi
n . (10)

where Hvi(v)
g denotes the g-th cross-modality cluster and |·|

indicates the number of instances per cluster.
Memory Aggregation. We aggregate the selected memories
using a momentum updating strategy by

φ
vi(δ )
g ← βφ

vi(δ−1)
g +(1−β )qi, (11)

φ
vi(δ )
g ← βφ

vi(δ−1)
g +(1−β )qv, (12)

Both visible and infrared features are used to update their
common cross-modality memory.
MSCC Loss Function.We also use ClusterNCE loss to pro-
mote cross- modality feature learning by the following equa-
tion:



Table 1: Comparison with the state-of-the-art VI-ReID methods on SYSU-MM01 dataset. It contains supervised and unsuper-
vised ReID methods. Rank-k accuracy (%), mAP(%) are reported.

SYSU-MM01 Settings All-search Indoor Search
Methods Venue r1(%) r10(%) r20% mAP(%) r1(%) r10(%) r20% mAP(%)

Su
pe

rv
is

ed AlignGAN ICCV-19 42.40 85.0 93.7 40.70 45.90 87.60 94.40 54.30
cm-SSFT TPAMI-20 47.70 - - 54.10 - - - -

AGW CVPR-20 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
DDAG ECCV-20 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98

CA ICCV-21 69.88 95.71 98.46 66.89 76.26 97.88 99.49 80.37

U
ns

up
er

vi
se

d CAP AAAI-21 16.82 47.60 61.42 15.71 24.57 57.93 72.74 30.74
ICE ICCV-21 20.54 57.5 70.89 20.39 29.81 69.41 82.66 38.35

PPLR CVPR-22 12.58 47.43 62.69 12.78 13.65 52.66 70.28 22.19
ISE CVPR-22 20.01 57.45 72.50 18.93 14.22 58.33 75.32 24.62
H2H TIP-21 30.15 65.92 77.32 29.40 - - - -

ADCA MM-22 45.51 85.29 93.16 42.73 50.60 89.66 96.15 59.11
Ours - 53.3 90.8 96.5 50.2 57.3 93.7 97.6 64.7

LMICC =− log
exp

(
qv ·φ vi

+/τ
)

∑
G
g=0 exp

(
qv ·φ vi

g /τ
) − log

exp
(
qi ·φ vi

+/τ
)

∑
G
g=0 exp

(
qi ·φ vi

g /τ
) .

(13)

Prototype Similarity Association
Thanks to MICC and MSCC, the model is able to learn both
modal-specific and modal-invariant features simultaneously,
and has a certain ability to cross-modality recognition. In or-
der to further explore the correlation between visual features
and infrared features, we propose the Prototype Similarity
Association (PSA) module. Firstly, we calculate the cosine
similarity between the center of the visual feature cluster
and the center of the infrared feature cluster, and construct a
similarity matrix to measure the correlation between cross-
modality features.

Similarity
(
φ

v,φ i) =
φ v·φ i

||φ v||× ||φ i||
. (14)

where φ v and φ i denote the center of the visual feature clus-
ter and the infrared feature cluster respectively.
PSA Loss function. For a visual feature center, it forms a
positive sample pair with the infrared feature center that has
the highest similarity with it, and a negative sample pair with
the other infrared feature centers. We assign new pseudo
labels < yv,yi > to positive sample pairs. Triplet Loss is
used to bring together high similarity cross-modality fea-
tures while distancing low similarity cross-modality features
by the following equation:

Lv
PSA = max(d(φ v

a ,φ
i
p)−d(φ v

a ,φ
i
n)+m,0), (15)

Li
PSA = max(d(φ i

a,φ
v
p)−d(φ i

a,φ
v
n )+m,0), (16)

where d(·, ·) denotes the Euclidean Distance. φ a, φ p and φ n

represent the features cluster centers of anchor, positive, and
negative respectively. m is the margin controlling how much

higher the distance with the negative cluster is than with the
positive cluster. The total PSA loss can be described as:

LPSA = Lv
PSA +Li

PSA. (17)

Overall Loss Function. In summary, the final loss function
can be defined as:

L = LMSCC +LMICC +LPSA. (18)

Experiments
Expeimental Setting
Dataset.We utilized two publicly available datasets, namely
RegDB (Park 2017) and SYSU-MM01 (Wu et al.
2017a) datasets, to evaluate our cross-modality person re-
identification approach. The SYSU-MM01 dataset com-
prises cross-modality person images captured by two near-
infrared cameras and four visible cameras. It encompasses
395 training identities, containing a total of 22,258 visi-
ble images and 11,909 near-infrared images, captured in
various indoor and outdoor environments. Our evaluation
encompasses both all-search and indoor-search modes.The
RegDB dataset is captured using a system that consists of
two aligned cameras, one thermal and one visible. It con-
sists of 412 unique identities. To assess our method, we con-
duct evaluations in two test modes: thermal to visible and
visible to thermal. We adhere strictly to established method-
ologies, performing ten trials of gallery set selection, and
subsequently compute the average performance.
Evaluation Metrics.Consistent with previous studies
(Mang Ye and Yuen 2018), we employ Mean Average
Precision (mAP) and Cumulative Matching Characteristics
(CMC) as the evaluation metrics for our analysis.
Implentation Details. We have implemented our proposed
framework using PyTorch. The configuration of the two
shallow layers adheres to the approach introduced in AGW
(Ye et al. 2022). For the shared layers, we utilize ResNet50,
which is initialized with pre-trained weights from ImageNet.
During the testing phase, we extract features from the pool-
ing layer of GeM (Radenovic, Tolias, and Chum 2019)



RegDB Settings Visible to Thermal Thermal to Visible
Methods Venue r1(%) r10(%) r20% mAP(%) r1(%) r10(%) r20% mAP(%)

Su
pe

rv
is

ed AlignGAN ICCV-19 57.9 - - 53.6 56.3 - - 53.4
cm-SSFT CVPR-20 72.3 - - 72.9 71.0 - - 71.7

AGW TPAMI-21 70.05 86.21 91.15 66.37 70.49 87.21 91.84 65.90
DDAG ECCV-20 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80

CA ICCV-21 85.03 95.49 97.54 79.14 84.75 95.33 97.51 77.82

U
ns

up
er

vi
se

d CAP AAAI-21 9.71 19.27 25.6 11.56 10.21 19.91 26.38 11.34
ICE ICCV-21 12.98 25.87 34.4 15.64 12.18 25.67 34.9 14.82

PPLR CVPR-22 8.93 20.87 27.91 11.14 8.11 20.29 28.79 9.07
ISE CVPR-22 16.12 23.30 28.93 16.99 10.83 18.64 27.09 13.66
H2H TIP-21 23.81 45.31 54.00 18.87 - - - -

ADCA MM-22 67.20 82.02 87.44 64.05 68.48 83.21 88.00 63.81
Ours - 74.4 87.7 91.5 70.3 73.5 86.3 89.8 70.1

and calculate cosine similarity. At the start of each training
epoch, DBSCAN (Ester et al. 1996a) is employed to gener-
ate pseudo labels independently for each modality.

During the training process, we select 16 person identi-
ties and 16 instances for each identity from the training sets
of each modality. To enhance the training, we apply random
horizontal flipping, random erasing, and random cropping
techniques to images with a size of 288 × 144. In the case of
the augmented visible stream, we employ the random Chan-
nel Augmentation (CA) method. The model is trained using
the Adam optimizer. Initially, the learning rate is set to 3.5e-
4 and then reduced to 1/10 of its previous value every 20
epochs. We train the model for a total of 100 epochs, where
the first 50 epochs are dedicated to pre-training the MSCC
framework, and the MICC and PSA are performed in the last
50 epochs.

Results and Analysis
Comparision with SVI-ReID Methods. As shown in Fig. 1
Our method outperforms several supervised methods. This
is an encouraging outcome, demonstrating the potential of
unsupervised cross-modality ReID in approximating the ef-
fectiveness of supervised VI-ReID.

The significant improvements observed in our method can
be attributed to its insightful design for USL-VI-ReID, offer-
ing three key advantages. Firstly, we do not require any ad-
ditional labeled data, making our proposed framework more
practical for deployment. Secondly, our solution is simple,
efficient, and easy to implement. We anticipate that incorpo-
rating advanced contrastive learning techniques would fur-
ther enhance performance. Lastly, the learned feature ex-
hibits robustness across different cross-modality datasets
and matching settings.
Comparision with USVI-ReID Methods. The experimen-
tal results clearly demonstrate that our method outper-
forms existing unsupervised methods across various set-
tings. Specifically, we achieve substantial improvements
compared to single-modality unsupervised methods, with
approximately 25% and 45% higher mAP scores on the
SYSU-MM01 and RegDB tasks, respectively. Furthermore,
when compared to H2H, which utilized an additional la-
beled RGB dataset for unsupervised cross-modality ReID,

we achieve noticeable gains of 20.8% and 51.43% in mAP
on SYSU-MM01 (all search) and RegDB (visible to in-
frared) tasks, respectively.

Ablation
The performance improvement of our method in USL-VI-
ReID is primarily attributed to two key components: Modal-
invariant Cluster Contrast learning (MICC) and Prototype
Similarity Association (PSA) module. To assess the effec-
tiveness of each component, we conducted ablation studies
on the SYSU-MM01 and RegDB datasets. The results, pre-
sented in Table 1, validate the impact of these components.

Table 2: Ablation studies on the SYSU-MM01 dataset.
”PSA” denotes the Prototype Similarity Association mod-
ule. ”MICC” means Modal-invariant Cluster Contrast learn-
ing. Rank at r accuracy(%), mAP(%) are reported.

Components SYSU-MM01 (All Search)
Baseline PSA MIC r1 r5 r10 r20 mAP√ 40.2 69.8 82.0 91.1 37.6
√ √ 51.2 79.1 89.3 95.1 48.1
√ √ 49.9 78.8 88.5 94.3 46.7
√ √ √ 53.3 81.1 90.8 96.5 50.2

Conclusion
This research paper introduces the task of unsupervised
learning for visible-infrared re-identification (USL-VI-
ReID), aiming to address the challenge of costly cross-
modality annotations. To overcome the issue of significant
cross-modality discrepancies in USL-VI-ReID, we propose
an efficient collaborative unsupervised learning framework
that leverages the concepts of homogenous joint learning
and heterogeneous aggregation. This framework enhances
unsupervised cross-modality recognition and has been ex-
tensively validated on two distinct tasks, demonstrating su-
perior performance compared to current state-of-the-art un-
supervised methods and even some supervised methods.
These results pave the way for the practical deployment of
unsupervised VI-ReID in real-world scenarios.
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